211 research outputs found

    Observation and characterization of mode splitting in microsphere resonators in aquatic environment

    Full text link
    Whispering gallery mode (WGM) optical resonators utilizing resonance shift (RS) and mode splitting (MS) techniques have emerged as highly sensitive platforms for label-free detection of nano-scale objects. RS method has been demonstrated in various resonators in air and liquid. MS in microsphere resonators has not been achieved in aqueous environment up to date, despite its demonstration in microtoroid resonators. Here, we demonstrate scatterer-induced MS of WGMs in microsphere resonators in water. We determine the size range of particles that induces MS in a microsphere in water as a function of resonator mode volume and quality factor. The results are confirmed by the experimental observations.Comment: 4 Pages, 5 Figures, 13 Reference

    Using Crowdsourced Vehicle Braking Data to Identify Roadway Hazards

    Get PDF
    Modern vehicles know more about the road conditions than transportation agencies. Enhanced vehicle data that provides information on “close calls” such as hard braking events or road conditions during winter such as wheel slips and traction control will be critical for improving safety and traffic operations. This research applied conflict analyses techniques to process approximately 1.5 million hard braking events that occurred in the state of Indiana over a period of one week in August 2019. The study looked at work zones, signalized intersections, interchanges and entry/exit ramps. Qualitative spatial frequency analysis of hard-braking events on the interstate demonstrated the ability to quickly identify temporary and long-term construction zones that warrant further investigation to improve geometry and advance warning signs. The study concludes by recommending the frequency of hard-braking events across different interstate routes to identify roadway locations that have abnormally high numbers of “close calls” for further engineering assessment

    Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines

    Get PDF
    Carbon nanodots (C-dots) are a kind of fluorescent carbon nanomaterials, composed of polyaromatic carbon domains surrounded by amorphous carbon frames, and have attracted a great deal of attention because of their interesting properties. There are still, however, challenges ahead such as blue-biased photoluminescence, spectral broadness, undefined energy gaps and etc. In this report, we chemically modify the surface of C-dots with a series of para-substituted anilines to control their photoluminescence. Our surface functionalization endows our C-dots with new energy levels, exhibiting long-wavelength (up to 650 nm) photoluminescence of very narrow spectral widths. The roles of para-substituted anilines and their substituents in developing such energy levels are thoroughly studied by using transient absorption spectroscopy. We finally demonstrate light-emitting devices exploiting our C-dots as a phosphor, converting UV light to a variety of colors with internal quantum yields of ca. 20%.open116665Ysciescopu

    Demonstration of mode splitting in an optical microcavity in aqueous environment

    Full text link
    Scatterer induced modal coupling and the consequent mode splitting in a whispering gallery mode resonator is demonstrated in aqueous environment. The rate of change in splitting as particles enter the resonator mode volume strongly depends on the concentration of particle solution: The higher is the concentration, the higher is the rate of change. Polystyrene nanoparticles of radius 50nm with concentration as low as 5x10^(-6)wt% have been detected using the mode splitting spectra. Observation of mode splitting in water paves the way for constructing advanced resonator based sensors for measuring nanoparticles and biomolecules in various environments.Comment: 8 pages, 4 figures, 21 Reference

    Soil fungal community development in a high Arctic glacier foreland follows a directional replacement model, with a mid-successional diversity maximum.

    Get PDF
    International audienceDirectional replacement and directional non-replacement models are two alternative paradigms for community development in primary successional environments. The first model emphasizes turnover in species between early and late successional niches. The second emphasizes accumulation of additional diversity over time. To test whether the development of soil fungal communities in the foreland of an Arctic glacier conforms to either of these models, we collected samples from the Midtre Lovénbreen Glacier, Svalbard, along a soil successional series spanning >80 years. Soil DNA was extracted, and fungal ITS1 region was amplified and sequenced on an Illumina Miseq. There was a progressive change in community composition in the soil fungal community, with greatest fungal OTU richness in the Mid Stage (50-80 years). A nestedness analysis showed that the Early Stage (20-50 years) and the Late Stage (>80 years) fungal communities were nested within the Mid Stage communities. These results imply that fungal community development in this glacier succession follows a directional replacement model. Soil development processes may initially be important in facilitating arrival of additional fungal species, to give a mid-successional diversity maximum that contains both early- and late-successional fungi. Competition may then decrease the overall diversity due to the loss of early successional species

    Extraction of Vehicle CAN Bus Data for Roadway Condition Monitoring

    Get PDF
    Obtaining timely information across the state roadway network is important for monitoring the condition of the roads and operating characteristics of traffic. One of the most significant challenges in winter roadway maintenance is identifying emerging or deteriorating conditions before significant crashes occur. For instance, almost all modern vehicles have accelerometers, anti-lock brake (ABS) and traction control systems. This data can be read from the Controller Area Network (CAN) of the vehicle, and combined with GPS coordinates and cellular connectivity, can provide valuable on-the-ground sampling of vehicle dynamics at the onset of a storm. We are rapidly entering an era where this vehicle data can provide an agency with opportunities to more effectively manage their systems than traditional procedures that rely on fixed infrastructure sensors and telephone reports. This data could also reduce the density of roadway weather information systems (RWIS), similar to how probe vehicle data has reduced the need for micro loop or side fire sensors for collecting traffic speeds

    Dashboards for Real-time Monitoring of Winter Operations Activities and After-action Assessment

    Get PDF
    The Indiana Department of Transportation (INDOT) operates a fleet of nearly 1100 snowplows and spends up to $60M annually on snow removal and de-icing as part of their winter operation maintenance activities. Systematically allocating resources and optimizing material application rates can potentially save revenue that can be reallocated for other roadway maintenance operations. Modern snowplows are beginning to be equipped with a variety of Mobile Road Weather Information Sensors (MARWIS) which can provide a host of analytical data characterizing on-the-ground conditions during periods of wintry precipitation. Traffic speeds fused with road conditions and precipitation data from weather stations provide a uniquely detailed look at the progression of a winter event and the performance of the fleet. This research uses a combination of traffic speeds, MARWIS and North American Land Data Assimilation System (NLDAS) data to develop real-time dashboards characterizing the impact of precipitation and pavement surface temperature on mobility. Twenty heavy snow events were identified for the state of Indiana from November 2018 through April 2019. Two particular instances, that impacted 182 miles and 231 miles of interstate at their peaks occurred in January and March, respectively, and were used as a case study for this paper. The dashboards proposed in this paper may prove to be particularly useful for agencies in tracking fleet activity through a winter storm, helping in resource allocation and scheduling and forecasting resource needs

    Connected Vehicle Corridor Deployment and Performance Measures for Assessment

    Get PDF
    In November 2016, the American Association of State Highway and Transportation Officials (AASHTO) announced the Signal Phase and Timing (SPaT) challenge to state and local agencies to kick start infrastructure deployments for V2I communications. The challenge involved the deployment of Dedicated Short Range Communication (DSRC) infrastructure with SPaT broadcasts (current intersection signal light phase) on at least 20 signalized intersections in all of the 50 states by 2020. Although the roadmap for agencies to partner with the automotive industry is still evolving, it is important for Indiana to not only support the SPaT challenge, but also identify mutually beneficial opportunities for INDOT to partner with the automotive industry as Indiana has the second largest automotive related Gross Domestic Product (GDP) in the country. During this study, connected traffic signal infrastructure was deployed at several locations around the state. The West Lafayette corridor SPaT message deployment was done using both traditional Dedicated Short Range Communication (DSRC) as well cellular communication. This report details the deployment locations, the various public and private sector stakeholders that were engaged during the field testing, and several vehicle-infrastructure communication experiments that were used to evaluate connected vehicle use cases. The findings of this research were as follows: The team successfully demonstrated use cases for placing virtual vehicle detection calls to a traffic signal controller using SPaT messages and evaluated latency. The team developed a scalable methodology for characterizing the probability of a traffic signal phase changing by time of day. This methodology of using agency traffic signal data for green light prediction and engine shut down at red lights is particularly useful to the automotive industry. The team successfully demonstrated that split failures, reduced roadway friction and hard braking events can be identified on the vehicle and transmitted to an agency. This enhanced probe data information is particularly valuable to agencies for identifying traffic signal timing problems, segments impacted by winter weather and location where drivers are encountering roadway conditions required hard braking. DSRC provides the lowest latency communication, but in general commercial cellular interface between vehicles and infrastructure provided acceptable latency for most use cases. For most applications, the team believes a commercial cellular interface between vehicles and infrastructure is the most scalable and feasible for an agency to maintain
    corecore